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He barely finished stating the problem when young Carl came forward and
placed his slate on the teacher’s desk, void of calculation, with the correct
answer: 5050. When asked to explain, Gauss admitted he recognized the
pattern 1 + 100 =101,2+99 = 101,3 + 98 = 101, and soon to 50 + 51 =
101. Since there are fifty such pairs, the sum must be 50 - 101 = 5050. The
pattern for the sum (adding the largest number to the smallest, the second
largest to the second smallest, and so on) is illustrated in Figure 1.1, where
the rows of balls represent positive integers.

The number 7, = 1 +2+ 3 + --- + n for a positive integer n is called the
nth triangular number, from the pattern of the dots on the left in Figure 1.1.
Young Carl correctly computed #2199 = 5050. However, this solution works
only for n even, so we first prove

Theorem 1.1. Foralln > 1,t, = n(n + 1)/2.

Proof. We find a pattern that works for any n by arranging two copies of 7,
to form a rectangular array of balls in 7 rows and n 4+ 1 columns. Then we
have 2t, = n(n + 1), ort, = n(n +1)/2. See Figure 1.2. M
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The counting procedure in the preceding combinatorial proof is double
counting or the Fubini principle, as mentioned in the Introduction. We em-
ploy the same procedure to prove that sums of odd numbers are squares.

Theorem 1.2, Foralln > 1,1 +3+5+---+ (2n—1) = n?
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Proof. We give two combinatorial proofs. In Figure 1.3a, we count the balls
In two ways, first as a square array of balls, and then by the number of balls
in each L-shaped region of similarly colored balls. In Figure 1.3b, we see a
one-to one correspondence (illustrated by the color of the balls) between a
triangular array of balls in rows with 1, 3, 5,..., 2n — 1 balls, and a square
array of balls. M

The same 1dea can be employed in three dimensions to establish the fol-
lowing sequence of identities:

1+2=3,
44546=7+8,
94104 11 + 12 = 13 + 14 + 15, etc.

Each row begins with a square. The general pattern
4?4 D)4+ (% + =@ +n+D+--+ @+ 2n)

can be proved by induction, but the following visual proof is nicer. -
In Figure 1.4, we see the n = 4 version of the identity where counting the

number of small cubes in the pile in two different ways yields 16 + 17 +

18+ 19+ 20 =21 4 22 + 23 + 24.
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The arrows denote the correspondence between an element of the set with z,
elements and a pair of elements from a set of # + 1 elements. M

1.2 Sums of squares, triangular numbers,
and cubes

Having examined triangular numbers and squares as sums of integers and
sums of odd integers, we now consider sums of triangular numbers and sums
of squares.

nn+ 1)2n + 1)

Theorem 1.7. Foralln > 1,12 422432 4 ... 402 = 6

Proof. We give two proofs. In the first we exhibit a one-to-one correspon-
dence between three copies of 12 4-22 432 4 ... 4 12 and a rectangle whose
dimensions are 27 + L and 1 +2 + ---+n = n(n + 1)/2 [Gardner, 1973].
See Figure 1.9.
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1.2, Sums of squares, triangular nun
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In the second proof, we write each square k2 as a sum of k ks, then place
those numbers in a triangular array, create two more arrays by rotating the
triangular array by 120 and 240°, and add corresponding entrics in each
triangular array. See Figure 1.10 [Kung, 1989]. H
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Proof. In Figure 1.11, we stack layers of unit cubes to represent the trian-
gular numbers. The sum of the triangular numbers is total number of cubes,
which is the same as the total volume of the cubes. To compute the volume,
we “slice off” small pyramids (shaded gray) and place each small pyramid
on the top of the cube from which it came. The result is a large right trian-

Theorem 1.8, Foralln > 1,t; +th +t3+-+1, =

gular pyramid ninus sorme smaller right triangular pyramids along one edge
of the base.
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In the proof we evaluated the sum of the first n triangular numbers by
computing volumes of pyramids. This is actually an extension of the Fubin
principle from simple enumeration of objects to additive measures such as
length, area and volume. The volume version of the Fubini principle is: com-
puting the volume of an object in two different ways yields the same number;
and similarly for length and area. We cannot, however, extend the Cantor
principle to additive measures—for example, one can construct a one-to-
one correspondence between the points on two line segments with different
lengths.

Theorem 1.9, Foralln > 1, 134234334+ 403 = (142434 +n)? =
t2.

Proof. Again, we give two proofs. In the first, we represent k3 as k copies of
a square with area k? to establish the identity [Cupillari, 1989; Lushbaugh,
1965].

Figure 1.12.

In Figure 1.12, we have 4(1° + 2% + 33 4+ ... + n?) = [n(n + 1)]? (for
n =4).

For the second proof, we use the factthat | +2 + 3+ -+ (n — 1) +
n+m—0D+---4+2+1= n? (see Challenge 1.1a) and consider a square
array of numbers in which the element in row i and column j is i, and sum
the numbers in two different ways [Pouryoussefi, 1989].

Summing by columns yields 7 i + 23 7o i)+ -+ n(Q =1 i) =
0.3 i)2, while summing by the L-shaped shaded regions yields (using the

n

result of Challenge 1.1a) 1-1242-22 4 ... 4 n-n2 =37 i3 M

1.3. There are infinitely many primes
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We conclude this section with a theo
sum of integers. |

Theorem 1.10. Foralln > 1, ZLIZT
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pute the volume of a rectangular box com
tion. See Figure 1.14.
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Two copies of the sum § = 7 Y
box with base 72 and height 27, hence o
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